
This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Phosphinomethyl Compounds: Versatile Tools in Organometallic Chemistry

Hans H. Karsch^a; Armin Appelt^a

^a Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, Garching, West-Germany

To cite this Article Karsch, Hans H. and Appelt, Armin(1983) 'Phosphinomethyl Compounds: Versatile Tools in Organometallic Chemistry', Phosphorus, Sulfur, and Silicon and the Related Elements, 18: 1, 287 - 290

To link to this Article: DOI: 10.1080/03086648308076022 URL: http://dx.doi.org/10.1080/03086648308076022

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PHOSPHINOMETHYL COMPOUNDS: VERSATILE TOOLS IN ORGANOMETALLIC CHEMISTRY

HANS H. KARSCH and ARMIN APPELT Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, 8046 Garching, West-Germany

Abstract The preparation and properties of some main group and transition element compounds (Al, Si, Sn, P, Zr, Fe, Co, Ni), containing phosphinomethyl substituents, are described.

INTRODUCTION

The reactivity and ambidentate nature of phosphinomethanides, i.e. $[(R_2P)_n^{CH}(3-n)]^-$ has attracted our attention in the past, e.g. Eq. (1)¹.

Thus phosphinomethyl substituted phosphines have been obtained according to Eq. $(2)^2$.

$$Me_{(3-n)}PCl_n + n LiCH_2PMe_2 \longrightarrow Me_{(3-n)}P(CH_2PMe_2)_n$$
 (2)

NEW RESULTS

We have now extended our studies to various other kinds of electrophiles. Thus a simple access to novel monoto tetradentate phosphine ligands is available, Eq. (3). Methyl substituents at the phosphorus atom and hetero-

element bridges distinguish these colourless, air sensitive and distillable liquids.

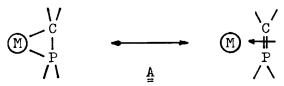
$$Me_{(4-n)}ECl_n + n LiCH_2PMe_2 \longrightarrow Me_{(4-n)}E(CH_2PMe_2)_n$$
 [E = Si, Sn]

The same type of reaction is also observed in the analogous organoaluminum system, thus combining electrophilic and nucleophilic centers in one molecule ("amphoteric ligand"), Eq. (4).

$$AlCl_3 + 3 LiCH_2PMe_2 \longrightarrow "Al(CH_2PMe_2)_3$$

$$\downarrow + 2 AlMe_3 \qquad (4)$$

$$3 "Me_2AlCH_2PMe_2"$$


The colourless crystals obtained, by means of spectroscopic and cryoscopic evidence, contain dimeric, six membered ring molecules. No monomeric adducts may be isolated on the addition of Lewis bases, e.g. PMe₃ or THF, whereas on the addition of LiCH₂PMe₂ aluminate ions are formed, i.e. Li[Me₂Al(CH₂PMe₂)₂] and Li[Al(CH₂PMe₂)₄].

The new diphosphines act as six ring chelate ligands in transition metal complexes, Eq. (5).

$$(COD)_2Ni + 2 E(CH_2PMe_2)_2 \longrightarrow E CH_2PMe_2 PMe_2CH_2$$
 $(COD)_2Ni + 2 E(CH_2PMe_2)_2 \longrightarrow E PMe_2CH_2$
 $(COD)_2Ni + 2 E(CH_2PMe_2)_2 \longrightarrow E PMe_2CH_2$
 $(CH_2PMe_2)_2 \longrightarrow E PMe_2CH_2$

In the phosphine/iron(0) complex system³, cyclometalation occurs at the methylene carbon atom and novel ferrabicyclic complexes are formed, i.e. [E(CH_PMe_2)_2](H)Fe[Me_PCHECH_PMe_2] (E = H_2C, Me_2C, Me₂Si, Me₂Sn, MeP). Reactions with CO, and (in the case of E = CH₂) with N₂, CO₂ and PR₃ yield pentaco-ordinated iron(0) complexes and thus demonstrate the existence of a reversible equilibrium with the iron(0) isomers $[E(CH_2PMe_2)_2]_2Fe$.

The structural unit of a η^2 -phosphinomethanide ligand, i.e. the three membered ring \underline{A} seems to account for the stability of these complexes.

This structural feature is also dominant in other phosphinomethyl substituted transition metal complexes, obtained by a similiar route to Eqs. (2), (3) and (4), i.e. Eq. (6).

[
$$M = L_3Co$$
, $L_2(CO)Co$, L_3Ni^+ , $L_3(H)Fe$, $L_3(Me)Fe$
and $L_2(Me)_2Co$; $L = PMe_3$]

In contrast to this, the phosphinomethyl group binds to early transition metals in a η^{1} - manner, Eq. $(7)^{4}$.

The bis(phosphinomethyl) derivative may act as a chelating diphosphine ligand, e.g. according to Eq.(5) $[E = cp_2Zr]$, thus combining electron rich [Ni(0), d¹⁰] and electron deficient $[Zr(IV), d^0]$ metal centers by phosphinomethyl bridges. This has remarkable conse-

quences for the properties of the resulting complex: it forms dark green solutions, from which black crystals may be obtained (THF).

The presence of two nucleophilic phosphinomethyl groups is also responsible for the reaction course according to Eq. (8), whereby a novel "heterodiene" complex is obtained.

$$cp_2 Zr(CH_2PMe_2)_2 + CO \longrightarrow cp_2 Zr^{-O} C-CH_2PMe_2$$
 (8)

From these and other findings, we conclude, that the introduction of the phosphinomethyl group in organometallic systems, which is easily achieved by means of phosphinomethanides, may play an important and growing role both in organophosphorus and in organometallic chemistry in the future.

REFERENCES

- 1. H.H. Karsch, Z. Naturforsch., 34b, 1171, 1178 (1979); H.H. Karsch, ACS Symposium Series 171, 141 (1981); H.H. Karsch, Chem. Ber. 115, 1956 (1982).
- 2. H.H. Karsch and H. Schmidbaur, Z. Naturforsch., 32b, 762 (1977);
- H.H. Karsch, Z. Naturforsch., 37b, 284 (1982).

 3. H.H. Karsch, H.-F. Klein and H. Schmidbaur, Chem. Ber. 110, 2200 (1977);
 H.H. Karsch and D. Neugebauer, Angew. Chem. 94, 322 (1982); Angew. Chem. Int. Ed. Engl. 21, 312 (1982).
- 4. See also:
 N.E. Schore and H. Hope, J. Am. Chem. Soc. 102,
 4251 (1980);
 P. Hofmann, P. Stauffert and N.E. Schore, Chem.
 Ber. 115, 2153 (1982)
 R. Choukroun and D. Gervais, J. Chem. Soc. Chem.

R. Choukroun and D. Gervais, J. Chem. Soc. Chem. Commun., 1982, 1300.